
that the solution studied here is the major term of the "inner expansion" of the exact solu- 
tion near the cylinder as v § 0 and large Z/a, at least far from the cylinder faces. 

The author expresses his gratitude to V. V. Pukhnachev, under whose guidance this study 
was carried out. 
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DETERMINATION OF THE BOUNDARY OF A HYDRODYNAMIC 

CONTACT REGION 

M. A. Galakhov and V. P. Kovalev UDC 5 3 2 . 5 1 6  

The thickness of a lubricating film and the integral hydrodynamic contact force charac- 
teristics are determined to a significant degree by the form and dimensions of the contact 
region [1-5]. The present study will formulate conditions on the boundary of a planar con- 
tact region with consideration of surface tension; the problem of boundary determination 
is formulated within the framework of Reynolds equations. 

I. Boundary Conditions for Reynolds Equations. We will consider the flow of a thin 
liquid layer, separating two surfaces $I and S= (Fig. I). We denote by ~ the region within 
which the liquid occupies the entire interval between the surfaces. Since the layer is thin, 
in correspondence to ~ we will consider a surface S, lying within ~ at equal distances from 
S~ and $2. We denote by 7~ S the boundary of the continuous liquid layer. We will consider 
the nonstationary problem. Let ~, Si, $2, S, y depend on time. Each point of M~y can be 
described by a moving Cartesian coordinate system M~% with unit vectors n, T, k such that 
the vector k is perpendicular to S, z is tangent to y, and n is tangent to S and perpendicular 
to y, directed outward from ~. Let u~ and u2 be the projections of the velocities of the sur- 
faces S~ and $2 on S. We will term the boundary an input (y+), if (n, u~)~ 0, (n, u2)~ 0, 
(n, ul) 2 + (n, u2)2~= 0, an output (y_), if (n, ul)~ 0, (n, ~=)~ O, (n, ul) a + (n, ua)~=/=0, 
or mixed (y• if the conditions for y+ and y_ are not fulfilled. In normal applications 
boundaries are usually either input or output. 

We will assume that the flow in ~ is described by a Reynolds equation, which requires 
two boundary conditions on the entire free boundary y. Analysis of the Stokes equation near 
y with consideration of surface tension on the boundary between the liquid and surrounding 
medium shows that if we neglect inertial terms and mass forces and assume the flow to be 
locally independent of coordinate ~, the boundary conditions will have the following struc- 
ture: 

2~ [ o (u2--ul, n ) h I h~]. (1.1) 
P = T  p+ ~ ( u , ~ '  (u,n) ' h '  h ' 

(qi -- qo, n) -= 0 1 .2 )  

on T+, 

on y+ at (ul, n) < 0, 

2,~ [ z (u~,n) h ] T . 

P = T ; ~  ~(~ ,n) '  ("1,")' ~ ' 

(q~, n) = h (.~, . )  g t* (--~, ~)' ("1, n)' ~ 

1.3)  

1.4) 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 3]-38, July-August, ]982. Original article submitted July 10, 198]. 

0021-8944/82/2304-0491S07.50 �9 1983 Plenum Publishing Corporation 491 



$, 

~ 2..--~. ''--=- 

Fig. 1. 

2~ [ ~ (us-- u~, n)] (1.5) 
P = -~- P -  ~ (u7 n ) '  (u, n) ; 

~ ( " 3 - ~ , " ) l  (ql, n)=h(u,n)/  ~--~'6: n)' (u,n)'-'J (1.6) 

on y_. Here p is pressure, h is the gap between $I and $2, u = (ul + u2)/2, g is surface 
tension, ~ is viscosity, hl and ha are the thicknesses of the liquid layers adhering to $I 

h~ ( ~p Op ) 
and S2 directly, beyond the limits of ~; qo = hlu~ + h~u2 and qi:--~ -g~n+~ +uh are 

the liquid flows outside and inside ~; p+, p_, p• f and g are functions defined by the solu- 
tion of the Stokes equation. The concrete form of conditions (I.I), (1.3)-(1.6) has not been 
obtained at the present time. However, in cases typical of hydrodynamic contact, simplifica- 
tions are possible. At characteristic pressures in ~, significantly exceeding possible 
capillary pressures, Eqs. (1.1), (1.3), (1.5) can be replaced by 

Ply = O, ( 1 . 7 )  

by including infinitely removed points within y. Condition (1.6) for the special case u2 = 
0 was studied approximately in [6], where it was shown that as the first argument tends to 
zero and infinity, f tends to unity and zero, respectively. In particular, the so-called 
cavitation or Reynolds boundary condition 

Op/O~ I~_ : 0 (1.8) 

c a n  b e  o b t a i n e d  as  t h e  l i m i t  o f  Eq.  ( 1 . 6 )  a s  o / V ( u ,  n)  t e n d s  t o  z e r o .  The a u t h o r s  know o f  no 
studies of conditions of the type of Eq. (1.4). We will now limit our consideration to flows 
with boundaries y+ and y-. 

2. Formulation of the Free Boundary Determination Problem. The boundary conditions de- 
scribed in Sec. I permit formulation of the free boundary determination problem. We will 
make a number of simplifying assumptions. We relate a Cartesian coordinate system Oxyz to 
the surface S, such that the plane xy is tangent to S at the point 0 (Fig. I). We assume 
that the characteristic radius of curvature of S is significantly larger than its dimensions. 
Then the Reynolds equation can be considered in the coordinate system Oxy, and the boundary 
conditions can be imposed on the plane xy. We denote the input and output boundaries by 
a(y, t) and c(y, t). W~ assume that a and c are uniquely defined with respect to y and for 
definiteness, c~a. 

Conditions (1.2), (1.6) can be written in the system Oxyz in the form 

h3 (@ Op oa ) ~a ~a 
(ux~hl + u2~h~)--(uxuhl + u~yhs)Oa/Og'(hx + hs)Oa/Ot ~ ~ 2 ~ x  og @' + uxh -- ugh-~g-- h--~-; ( 2 . 1 )  

3c h 3 lop Op .~)+h(ux__ Oc # 1 (  (2.2) 

8c 

Here U~x(u2x), U~y(U2y) are the projections of the velocities of the surfaces Si(S2) on the 
x and y axes, Ux = (U~x + U2x)/2, Uy = (U~y + U2y)/2. Condition (2.1) in the special case 
3/3y = 0 and U~y = U2y = 0 gives condition (1.4) of [3]. Condition (1.7) does not change its 
form, while Eq. (1.8) in conjunction with Eq. (1.7) gives 

Op/Ox = 0 (2.3) 

on t h e  b o u n d a r y  c ( y ,  t )  w h e r e  3 c / 3 y  e x i s t s .  
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The nonstationary Reynolds equation has the form 

div ((ha/i2t~) grad p - -  uh) = Oh/Ot, ( 2 . 4 )  

where div and grad are taken with respect to the variables x and y. In the future we will 
assume that the velocities u~ and u2 do not depend on x and y and have no components along 
the y axis. Let h,, u,, lx, I v be characteristic values of h, u, and the dimensions along 
the x and y axes. Referencing~a, c, x to lx, ytolv, htoh,,ptol2 Du, lxh~2, andttolxu.Z ~, 
and maintaining the previous notation, from Eqs. (1J7), (2.1), (2.3), (2.4), we obtain a 
system of equations in dimensionless variables: 

~--7\ o z /+e -~ -~ \  oil u - g T i ~ F ,  p = O ,  ~ = 0  at x = c ,  ( 2 . 5 )  

p=O. u~h~- t" O~(h~§ Op aa Oa 
�9 , u~,2~z---g- [. 7 z - - e - ~ y - 5 - ~ l ~ t h - - - g T h  at x = a .  

Here  ~ = ( l x / l y )  2, ul~ u a ,  u a r e  t h e  p r o j e c t i o n s  o f  u~ ,  u=,  u on t h e  x a x i s ,  

3. Narrow Region Case. We will consider system (2.5) with the assumption that h(x, y, 
t) = ho(t) + h~(x, y) and s << ]. Integrating the equation over x from a to c with considera- 
tion of the boundary conditions, we obtain 

- ~  , (a, y, t) ~- (ulh~ ~- u~h~) --  "-57"~a (hi + h~) __ uh (c, g ' t) . . . .  (c a) ho e .-a7 ~0 ha dx. (3.1) 

Since ~ << 1, we take the pressure from the solution of the one-dimensional Reynolds equation 
[3] : 

P = h a (z i ,  g, t) dx~, ( 3 . 2 )  
(~ 

where  ho i s  t h e  t ime  d e r i v a t i v e  o f  ho .  From Eqs .  ( 3 . 1 ) ,  ( 3 . 2 )  w i t h  use  o f  t h e  b o u n d a r y  c o n -  
d i t i o n  p = 0 at x = c we obtain a system for definition of a and c: 

~Ct 
~ t  h (a, g, t) + ( u ] t l  + u~h2) - -  -JF (h,  + h~) - -  , th (c, g, t) - -  ( 3 . 3 )  

' '~ ' a o ,~ [h ( %  y ,  t) - -  ~ (c ,  y ,  t) l - -  h ;  ( ~  - -  ~) 
- -  'c--a) ho= --e ~-y h (x, g, t, 3 (=, ~, t) x 

a - a 

} t u b (z, ~, t) - h (c, y, t ) l  - -  h o ( z  - -  c) 
)<dx 1 dx, ~ h a(z, y , t )  d x = O .  

a 

I n  t h e  s p e c i a l  c a s e  3 / 3 y  = 0 we o b t a i n  t h e  r e s u l t  o f  [3] .  For  a g i v e n  h" t h e  s y s t e m  i s  p a r a -  
b o l i c  with respect to a. 

4. Stationary Case. In the stationary case at u --- l, system (3.3) takes on the form 

O i l  o i h ( x l ' g ) - - h ( c ' g ) . d x l ] d x  , ( 4 . 1 )  q - h (~, y) = - ~ ~ h~ (~, y) ~ ha (=~, Y) 
a r 

i h(z, v) - -h(c ,  ~) 

o; 

where q(y) = u~hx(y) + uihi(y) is the input flow. System (4.1) is an ordinary second-order 
differential equation in a(y) (if we express c in terms of a from the second equation and 
substitute in the first). For a given input flow its solution may give either limited or 
infinite regions. 

We will pose the problem of finding a closed boundary a(yi) = c(y i) (i = l, 2) such that 
at the closure points Yi we have equality to zero of the "lateral spread" flow 

[~h(x,, ~)-h(c, y) 
lira h~ (x, y) ~ [ j  ha (x, ~) dxl dx = O, 
Y ~ g i ~  

i---- 1, 2. 
(4.2) 

493 



In the special case h = h~(y) + x2(h~(y) # 0) which corresponds, for example, to a 
sphere in a groove or a roller on a plane, Eqs. (4.1), (4.2) take on the form 

~ ~ V~' - 3 ~ 4  ~ - - ,  ]/rh ~ 
(4.3) 

I a 
~ (~ )}:0, lira ~ =_, 

(4.4) 

(4.5) 

Io(A,C)= - - d x l ;  I I (A,C)= x~--C2 + + (t  + x )3 x2dxl; 
x 1 

c 0 

E q u a t i o n  ( 4 . 4 )  g i v e s  a t r a n s c e n d e n t a l  r e l a t i o n s h i p  b e t w e e n  a and  c .  U s i n g  t h e  n o t a t i o n  
a~ hC~s = A, c/hC~s = C, t h i s  r e l a t i o n s h i p  c a n  be  a p p r o x i m a t e d  by t h e  e x p r e s s i o n  

A = - - ( u 0 C 0 ) - l J  3 [ ( l  - -  C/Co)-11 ~ - -  ~ ] + C[(3Co)-I(~oCo)-~J ~ - -  2]~ ( 4 . 6 )  

w h e r e  Co = 0 . 4 7 5 1 3  i s  a s o l u t i o n  o f  t h e  e q u a t i o n  I o (  --~,  Co) = 0;  x 0 = 6C~(I + C ~ ) - 2 ( 1  -- 
3C~)-1 ~ 2 . 7 9 3 .  E q u a t i o n  ( 4 . 6 )  g i v e s  c o r r e c t  a s y m p t o t e s  as C § 0 and  C § Co, w h i l e  f o r  C ~ ( 0 ,  
Co) t h e  e r r o r  does  n o t  e x c e e d  5%. 

S y s t e m  ( 4 . 3 ) ,  ( 4 . 4 )  c o n t a i n s  t h e  s m a l l  p a r a m e t e r  r  F o r  r = 0 Eqs .  ( 4 . 3 ) ,  ( 4 . 4 )  r e p r e -  
s e n t  t h e  p r o b l e m  o f  d e t e r m i n i n g  t h e  f r e e  b o u n d a r y  w i t h  l i n e a r  c o n t a c t .  I n  [3] i t  was shown 
t h a t  t h i s  p r o b l e m  has  a s o l u t i o n  o n l y  a t  q / h 3  ~ [1, l + C~] .  T h u s ,  t h e  l i m i t i n g  t r a n s i t i o n  
to e = 0 is possible only with the indicated limitation on the input current. In the general 
case we assume that the interval (y~, y2) can be divided into segments of two types: the 
first (a + const as c § 0) and second (a +-~ as c + 0). In intervals of the first type the 
cofactor of e = 0 on the right side of Eq. (4.3) is finite and a solution can be obtained by 
setting c = 0. In intervals of the second type Eq. (4.4) gives c = Cor and the integrals 
It(A, C) and I2(A, C) are equivalent to A4/28 and A2/I0 as A § and Eq. (4.3) gives 

d2(a4) (4.7) O+c ) q = 2s �9 

The boundary conditions take on the form 

' d ( 4 . 8 )  a(yi)=0, lira ~ ( a  4)=0, i = i ,  2, 
Y~Yi 

I 

where Yi are the boundaries of the in te rva ls  of the second type. 

The boundary can be constructed in the following manner; we define those y, for which 
q/hs > 1 + C~. Here the solut ion w i l l  be of the second type. The boundaries of second-type 
in te rva l s  can extend beyond the region where q/h3 > 1 + C~. They are defined in the process 
of solving Eqs. (4.7),  (4.8). I t  can be shown that to several  in te rva ls  with q/h~ > 1 + C~ 
there corresponds one i n t e rva l  of the second type solut ion.  I f  q/h3 < ] + C~ and the point 
does not fall into a second type interval, its solution is determined from the one-dimensional 
R~nolds equation, i.e., from system (4.3), (4.4) at g = 0 (solution of the first type). 

ccyJ =~co 
Fig. 2. 
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Fig. 3. Fig. 4. 
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We will consider several examples. Let h3(y) ~ l, q(y) = q,6(y), where 5 is a delta 
function. Integration of Eqs. (4.7), (4.8) gives Yi = • + C~), a(0) = --[7q~/2e(| + 
C~)] I/4, and c is found from Eq. (4.4). Figure 2 depicts characteristic contact regions for 
various q,. Larger ql correspond to a larger region. 

We will consider a rectangular input flow (q(y) = q2 at lyl <yo, q(y) = 0 at lyI> yo) 
below a cylinder h~(y) ~ |. At qz < ] + C~ a solution of the first type is obtained. The 
boundaries are shown in Fig. 3 by the numbers ]-3 in order of increasing qi. In this case 
c = /q2 -- I, and a is determined from Eq. (4.4). At q2 > | + C~ a sol~tion of the second 
type is obtained, and the boundaries are shown by numbers 4-6 of Fig. 3. In this case 

2 ]I14 [ 1492~0 (q2- ~ -- C~) , qiyo 
. . . .  T - i ' -  t + c o (0)= [ s(i~Co ) g ~ =  ~ ~. 

The dependence of a(O) on qo, as is evident from Fig. 3, is not monotonic. The point q2 = 
I + C~ is singular. In its vicinity the solution must be sought from the full system (4.3)- 
(4.5). Use of these equations after division into solutions of the first and second types 
can lead to large errors here. 

We will consider h3 = 1 + yi, q -- I<< Co,2 with q independent of y. This corresponds, 
for example, to rolling of a sphere in a lubricated channel, with slight immersion of the 
sphere into the lubricant. In this case a solution of the first type is obtained: c~ 

~q -- 1 -- y 2 ,  a ~ - - 2 / q  -- 1 -- y~ ,  yi~,-.~• ~ 1. 

The soJution of Eqs. (4.3), (4.4) with the condition of equality of the distributed 
flows before the input and after the output boundary is of great practical interest: h(c) = 
q in the notation of Eq. (4.3). Such a situation can obviously occur in roller bearings with 
stationary rotation of the roller. This condition in conjunction with the condition of sym- 
metry with respect to y transforms Eq. (4.3) to 

h 3 ~  1 ~ ' = 3Iz ~t~'q' V~--2[2 ~ '  ~-Y" (4.9) 

Study of system (4.4), (4.9) shows that it cannot produce finite contact regions with h3 
monotonically increasing with increase in lyl. Apparently, it is necessary to consider sur- 
face tension to obtain such regions. With specification of various a(0), solution of the 
system (at h3 = ! + Y=) gives a number of curves a(y) and c(y) which tend to common (but dif- 
ferent for a and c) asymptotes at infinity, these being rays passing through the origin of 
the coordinate system. Such region forms have been observed in experiment [7]. 

5. Determination of the Lubricating Layer Boundaries Far from the Minimum Gap Point. We 
will consider the stationary flow of a lubricating layer between two contacting solid bodies 
as they roll. Such a situation is an idealization of real conditions, since the presence of 
rolling with contact leads to infinite pressures in view of the Reynolds equation. But it 
will describe the flow adequately at distances from the minimum gap point large in comparison 
to the "hydrodynamic dimension," /2Rmaxhmin, where Rma x is the maximum radius of curvature of 
the gap form and hmi n is the minimum film thickness. 

In the Cartesian coordinate system Oxy, introduced in Sec. 2, let the gap form be de- 
scribed by the function h = x~/2Rx + y2/2Ry, In a polar coordinate syste~ Or~,the gap will 
have the form h == r~(cos2~/2~ ~sin~/2Ry)- The stationary solution of Reynolds equation (2.4) 
in the polar coordinate system will have the form 

r-~ ~ [rV~P](cos:r ~ [ " e J  = 24~u(2Rx)2cos% o r  [ a r j  ~ ( r  3 0 ~ J  
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where ~o = Rx/Ry. We assume that the input and output boundaries are rays radiating from the 
origin with polar angles ~+ and T_ (Fig. 4). Such region forms were obtained in the experi- 
ments of [8]. We will show that there exist exact solutions of the Reynolds equations de- 
scribing regions of such form. For definiteness, we assume T+ ~ (~/2, ~) T-~ (0, ~/2). We 
will consider solutions symmetric with respect to y, so that 2~- T- and 2~- T+ are also 
output and input boundaries. With such assumptions boundary conditions (2.1), (2.2), (|.7) 
have the form 

[q  at T ~ T+ 

a t  T-,  

p = 0  at T = T + ,  T = : T - ,  

where q = u(hl + h2). 
solution in the form p = p(r)~(T) �9 For 0(r) we may take 0(r) = 12~u(2Rx)~r -3. 
obtain the equation 

d~ (COS2 Tq-eo sin~ T)3 - ~  - -  9do (cos 2 T -~ So sin 2 (p)a = 2 cos T 

with boundary conditions 

dq) In at q0 = T+, 
I. (eOS2T_~e0sin2T)2 _@ 1 = l  ( ~ ) ( 5 . 2 )  

s i n ~  / ~ u - ~ n ~ '  0 at T = q~-; 

do(T+) = dO(T-) = 0, (5.3) 

where u = 2R:cq/[u(cos2(p$ 0 c e0sin2T+)r2]. 

The equation admits a particular solution 

:dOo = " I 1 / ( 3  + 2eo)]cos T/[(cos~(p § eosin2q~)~-], 

corresponding to the solution of [4]. 

For Eo = ! Eq. (5.1) simplifies 

d2dP/d@ - -  9qO = 2 cos T- ( 5 . 4 )  

For  t h e  c a s e  o f  a b u n d a n t  l u b r i c a t i o n ,  w h e r e  t h e r e  i s  no i n p u t  b o u n d a r y  and t h e  b o u n d a r y  
c o n d i t i o n  a t  t h e  i n p u t  i s  r e p l a c e d  by a symmet ry  c o n d i t i o n  dO(T)= d O ( 2 n -  S~), t h e  s o l u t i o n  o f  
Eq.  ( 5 . 4 )  has  t h e  fo rm 

The equation and boundary conditions for q/r 2 = const permit seeking a 

For r we 

t COST@ t cos(p_eh(3cp--3n) 
qO : 5 5 ch (3~_ -- 3~) ' 

wher6~: _ i s  f o u n d  f r o m  

3 ctg q0_.th (3~ - -  3T_) - -  t = 511 - -  ](ol(pu sin qo_), 0)]. 

For ~/~u = 0, or f = l, we obtain ~ = 1.239. For o/~u = ~ or f = 0, we obtain q = 0.4636. 
Since in the given case T_cannot be larger than 1.249, and at such e the quantity th(3~- 
3~0_) is close to I, then with good accuracy (%10 -s) to define cp~we can recommend the expres- 
sion 

3 r T-  - -  I =: 5[l--f(o/(btu sin T-) ,  0)]. 

It can be concluded that with abundant lubrication the angle e_lies in the range from 0.4636 
to 1.249 (or 26.2 ~ to 71.6~ 

In the case of insufficient lubrication (i.e., in the presence of an input boundary) at 
eo = 1 

�9 = - - ( t /5)  cos T q- (cos r (3qD+ - -  3T) -b cos T+sh (3T - -  3T-))/(5sh(3T+ - -  3T-)). 

From condition (5.2) at the output it follows that 

cos (p+ -- cos tp_ eh (3qo+ -- 3r 5 ( ~ ) 
2 -~ sin go_ sh (3(0+ - -  3q).)  ~ -if- ] ~u sfn qo_' 0 . 

The "periodicity" condition (equality of flow at input q+(y) to flow at output q_(y)) is of 
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a b 

d~ho>o 

agt)  o -ace)  ~ -c(t) 0 C(t)  ac 

F i g .  5. 

interest: 

[ ] 1 ...... si-7---  d~ +I = d ~ ( ~ _ )  sin2 ~+ ~+ sin z T_ s inT- d~ + t . 

6. L imi t ed  L u b r i c a t i o n  i n  Approach and S e p a r a t i o n  o f  R ig id  C y l i n d e r s .  We w i l l  con -  
s i d e r  r i g i d  c y l i n d e r s  h = h o ( t )  + xa /2R.  E q u a t i o n  (2 .4 )  a t  u ~ 0 and a / a y  = 0 has  the  form 

0 ha : 121~ (6 .1)  
o-7 ~ 7F" 

Now let the flow be symmetric about the point x = O. 

We will consider the "crushing" of an oil droplet (Fig. 5a). In this case the bounda- 
ries ~(t) and-~(t) are input boundaries. Condition (2.]) reduces to 

h a Op Oa 
12--i0-7"+ h - b y :  0 (6 .2 )  

a t  x = a .  E l i m i n a t i n g  p from Eqs. ( 6 . l ) ,  ( 6 . 2 ) ,  and ( l . 7 )  g ives  

--hoa - -  aa/6R = W2, (6 .3 )  

where V is the liquid volume per unit cylinder length. Equation (6.3) expresses the law of 
conservation of volume. For the pressure we obtain 

P = - - ( 6 R p ~ o / d t ) [  l / h ~ -  t/h2(a)]. (6 .4 )  

We will consider separation of the cylinders (Fig. 5b). Now the boundaries c(t) and 
--c(t) are outputs. Condition (2.2) takes on the form 

ha Op ~_hdC dc h] ( a ) 
12~ Oz �9 dt - -  dt ~dc/dt' 0 . (6 .5 )  

The solution of Eqs. ( 6 . 1 ) ,  (6.5), (1.7) at ~ = ~(f = 0) again gives the law of conservation 
of volume hoc + c3/6R = V/2, and the pressure is determined from Eq. (6.4) with a replaced by 
c. If ~ < ~, as is shown in Fig. 5b, a certain layer of liquid will remain on the walls, the 
volume of liquid in contact x~ (--c, c) decreasing. Application of the cavitation condition 

= 0(f = ]) in the given case leads to instantaneous breakoff of the lubricating film, i~ 
surface tension cannot be neglected in the problem of separation. 
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